深圳电子展
2025.10.28-30
深圳国际会展中心(宝安)

人类定性处理信息,而计算机定量处理信息

环顾四周,我们的日常生活充满了算法。由于所有算法都是基于数字,于是我们使用诸如“目标函数”这样的术语,它是一个表示特定目标的数值函数。许多算法的唯一目的是达到该函数的较大值或较小值,并且算法的特性因实现方式而异。
赢得诸如围棋或国际象棋等任务的目标相对容易量化。量化越容易,算法的效果就越好。相反,人类往往在没有量化思考的情况下做出决定。

举个“打扫房间”的例子,我们打扫房间的方式每天都有细微的不同,这取决于具体情况,取决于房间的主人,也取决于我们的感觉。在这个过程中,我们是否试图使某种功能较大化?事实上,我们没有做这样的事情。“打扫”这个行为一直是以“足够干净”这个抽象目标进行的。此外,多少是“足够”的标准很容易改变,这个标准在人与人之间可能是不同的。
我们习惯将已知信息放在一起来做出足够好的决定。但是,我们通常不会检查每个决定是否是优质的。而且大多数时候都是如此,因为我们必须用有限的数据满足众多相互矛盾的指标。

但是,在设计我们期望机器人执行的工作或服务时,人和算法之间的这种操作差异可能会造成麻烦。这是因为,当算法根据量化值执行任务时,人类的满意度,也就是任务的结果,很难被完全量化。量化一项必须适应个人喜好或不断变化环境的任务的目标(如上述打扫房间)并不是一件容易的事。也就是说,为了与人类共存,机器人的进化也许不是为了优化特定功能,而是为了实现“足够好”的结果。当然,后者想要在现实生活中稳健地实现要困难很多,因为你需要应付这么多相互冲突的目标和定性约束。 

 

来源:网络