电子展|先进封装助力产业升级,材料端多品类受益
1、 互连工艺升级是先进封装的关键,材料升级是互连工艺升 级的基础
先进封装技术路径多元化,技术持续创新迭代,在市场需求的推动下,传统封 装不断创新、演变,出现了各种新型的封装结构。电子展了解到,随着封装技术进步和下游市场对 于产品小型化需求增长,SiP(系统级封装)和 PoP(Package on package,叠成封装 技术)奠定了先进封装时代的开始,以实现更高的集成密度。2D IC 封装技术(如倒 装芯片 Flip-Chip、晶圆级封装 WLP)和 3D IC 封装技术(如硅通孔,TSV)的出现, 进一步缩短了芯片之间的互连距离。近年来,先进封装的发展势头迅捷,如台积电 的 InFO(集成扇出)和 CoWoS(Chip On Wafer On Substrate)、日月光的 FOCoS(基 板上扇出芯片)、Amkor 的 SLIM(无硅集成模块)和 SWIFT(硅晶圆集成扇出技术) 等。 先进封装主要技术平台包括:倒装(FC)、晶圆级封装(WLP)、2.5D、3D 封装 等。支持这些平台技术的主要互连工艺包括凸块(Bumping)、重布线(RDL)、硅 通孔(TSV)、混合键合等,互连工艺升级是先进封装的关键。
1.1、 凸块(Bumping):多种先进封装形式的基础工艺
电子展了解到,凸块(bumping)为先进的晶圆级工艺技术之一,将晶圆切割成单个芯片之前, 在基板上形成由各种金属制成的“凸块”或“球”。晶圆凸块为倒装芯片或板级半导 体封装的重要组成部分,已成为当今消费电子产品互连技术的标准。凸块在管芯和 衬底之间提供比引线键合更短的路径,以改善倒装芯片封装的电气、机械和热性能。 倒装芯片互连可减少信号传播延迟,提供更好的带宽,并缓解功率分配的限制。 不同类型的凸块材料,其互连方法有所不同。凸块按照材料成分来区分,主要 包括以铜柱凸块(Cu Pillar)、金凸块(Au Bump)、镍凸块(Ni Bump)、铟凸块(In Bump)等为代表的单质金属凸块和以锡基焊料为代表的焊料凸块(Solder Bump)及 聚合物凸块等。凸块互连相关技术包括材料选择、尺寸设计、凸块制造、互连工艺 及可靠性和测试等。不同的凸块材料,其加工制造方法各不相同,对应的互连方法和互连工艺中的焊(黏)接温度也不尽相同。
晶圆凸块技术制作过程复杂,需要清洗、溅镀、曝光、显影、电镀去胶、蚀刻 和良品测试等环节,其对应材料需求为清洗液、靶材、电镀液、光刻胶、显影液、 蚀刻液等。具体工艺如下: 首先,采用溅射或其他物理气相沉积的方式在圆片表面沉积一层钛或钛钨作为 阻挡层,再沉积一层铜或其他金属作为后面电镀所需的种子层。在沉积金属前,圆 片先进入溅射机台的预清洁腔体,用氩气等离子去除焊盘金属表面的氧化层。 其次,在圆片表面旋涂一定厚度的光刻胶,并运用光刻曝光工艺,以改变其在 显影液中的溶解度。光刻胶与显影液充分反应后,得到设计所需的光刻图形。 再则,圆片进入电镀机,通过合理控制电镀电流、电镀时间、电镀液液流、电 镀液温度等,得到一定厚度的金属层作为 UBM(Under Bump Metallization,凸点下 金属化层)。在有机溶液中浸泡后,圆片表面的光刻胶被去除;再用相应的腐蚀液去 除圆片表面 UBM 以外区域的溅射种子层和阻挡层。 最后,在植球工序中,需要用两块开有圆孔的金属薄板作为掩模板,位置与圆 片表面 UBM 的位置相对应。在植球前,先用第 1 块金属掩模板将助焊剂印刷到 UBM 表面;再用第 2 块金属掩模板将预成型的锡球印刷到 UBM 上;最后,圆片经过回 流炉使锡球在高温下熔化,熔化的锡球与 UBM 在界面上生成金属间化合物,冷却 后锡球与 UBM 形成良好的结合。 采用电镀的方式也可以得到焊球凸块,即在电镀 UBM 完成后,接着电镀焊料; 去除光刻胶和腐蚀溅射金属后,经过回流,得到焊球凸块。电镀方式也是铜柱凸块 和金凸块加工的常用方法。
电子展了解到,电子器件向更轻薄、更微型和更高性能进步,促使凸块尺寸减小,精细间距愈 发重要。凸块间距(Bump Pitch)越小,意味着凸点密度增大,封装集成度越高,难 度越来越大。行业内凸点间距正在朝着 20μm 推进,而实际上巨头已经实现了小于 10μm 的凸点间距。如果凸点间距超过 20μm,在内部互连的技术上采用基于热压 键合(TCB)的微凸块连接技术。面向未来,混合键合(HB)铜对铜连接技术可以 实现更小的凸点间距(10μm 以下)和更高的凸点密度(10000 个/mm2),并带动带 宽和功耗双提升。随着高密度芯片需求的不断扩大带来倒装需求的增长,Bumping 的需求将不断提升,相关材料需求也将不断提升。
文章来源:未来智库